Телемеханика Квантование по уровню
Квантование по уровню

Квантование по уровню - это процесс замены непрерывной функции ее отдельными значениями, отстоящими друг от друга на конечный интервал (уровень). При квантовании значение функции в произвольный момент времени заменяется ее ближайшим значением, называемым уровнем квантования. Интервал между двумя дискретными значениями уровней называется шагом квантования (q).

Рис. Квантование сигнала по уровню: а - с постоянным шагом квантования; б - погрешности квантования; в - квантование с переменным шагом

По оси ординат откладывается величина заранее выбранного шага квантования q и проводятся линии, параллельные оси времени, обозначающие уровни квантования. Переход с одного уровня на другой происходит, когда значение функции находится в середине интервала квантования. Переход с одного уровня на другой происходит, когда значение функции находится в середине интервала квантования, так как в этот момент абсолютная погрешность квантование ∆к.у. оказывается наибольшей. Действительно, если значение функции находится в середине между двумя уровнями (точки а, б, в…), то возникает неопределенность, так как функция равноудалена от обоих уровней. Так, например, если значение функции в точке в возникает на бесконечно малую величину, то это новое значение целесообразно отнести к уровню 3. Наоборот, значение функции, несколько меньше значения в точки в, будет заменено уровнем 2. Исходя из сказанного процесс квантования осуществляется следующим образом: интервал квантования делится пополам, и проводится пунктирные горизонтальные линии до их пересечения с квантуемой функцией. Точки пересечения обозначаются буквами (а, b, c, d и т.д.), в них значение функции передается наименее точно, возникает ошибка квантования ∆к.у., равная разности между значением функции λ(t) и ближайшим уровнем. Так как наименее точно функция передается в точке, находящейся между двумя уровнями квантования и отстоящей от них на половину интервала квантования q/2, то максимальная ошибка квантования по уровню определится как

(2.1)

Здесь + q/2 - максимальная положительная ошибка квантования, например, от точки в до уровня 2, а - q/2 - максимальная отрицательная ошибка квантования, например, от точки в до уровня 3. Погрешность квантования представлены на рис. б), на котором на оси времени отложены отрезки уровней квантования, пересекаемые функцией.

Так, функция между точками k и a пересекает уровень 2. Этот уровень отложен на оси t (рис. г.б), и проведен отрезок функции k-a. На участке а-b функция хотя и не пересекает ни один из уровней, но так как она проходит ближе к уровню 1, то отрезок этого уровня откладывается на оси времени. В этом диапазоне от точки а до точки b погрешность отсчитывается от уровня 1 и будет только положительная. На других участках имеет место погрешность и положительная, и отрицательная.

Таким образом, в результате квантования функции (t), произведенного по определенному правилу, был отобран ряд дискретных значений этой функции в точках а, b, c, d и т.д. Отбором точек и заканчивается собственно процесс квантования. Если же необходимо представить себе полностью форму той функции, которая заменила функцию (t), поступают следующим образом. Через точки а, b, c, d и т. д. проводят вертикальные отрезки (до их пересечения с уровнями), которые затем соединяются горизонтальными отрезками, образуя ступенчатую квантованную функцию Из рис. г), а) следует, что квантованная ступенчатая функция как бы обходит с двух сторон (выше и ниже) непрерывную функцию это позволяет рассматривать квантование как результат положения на функцию помехи ∆(t), которую называют шумом или помехой квантования.

Как следует из рис. а), число уровней квантования N на единицу больше числа интервала N - 1.

Если сообщение ограничено диапазоном от до , то

.

При имеем

Что касается точности преобразования (квантования), то обычно она задается в виде значения приведенной относительной погрешности (в %), которая по определению равна . При описанном выше методе квантование (рис. б) погрешность не может превышать q/2, т.е. при подсчете нужно учитывать (2-1). Таким образом, считая, что (это достигается соответствующим расположением осей координат) получим

(2-4)

и шаг квантования при заданной погрешности квантования равен

(2-5)

Пример 2-1. Предположим, необходимо провести квантование непрерывной функции, от нуля до 100 В, с точностью . Согласно (2-5) q = 2В. Из (2-3) определяем, что необходим 51 уровень квантования.

Замена действительного значения функции ее ближайшим значением создает погрешность квантования, которая может принять любые величины от - q/2 до + q/2 (рис. б). При достаточно большом числе уровней квантование N распределение погрешности квантования в пределах от - q/2 до + q/2 будет равномерное независимо от закона распределения самой функции . Средне - квадратичное значение погрешности квантования по уровню

т. е. в раз меньше максимальной ошибки.

Неравномерное квантование по уровню. Некоторые функции, подлежащие квантованию, изменяются так, что их целесообразно квантовать с переменным шагом квантования Так, на рис. г) показана нелинейная зависимость тока I от напряжения U. Если необходимо при измерении получить равномерную шкалу напряжений, то отсчет по току надо вести с переменным шагом q, уменьшая его с ростом амплитуды. Могут быть и другие варианты изменения шага квантования. Так, например, если необходимо получить более точные значения в какой-либо части квантуемой функции, то в этом диапазоне шаг квантования следует уменьшить.

Восстановлении функции, квантованной по уровню. Квантование по уровню осуществляется для последующего кодирования, т.е. каждый уровень квантованной функции передается кодом.

На приемной стороне кодовая комбинация, поступая на дешифратор, преобразуется в ток или напряжения, которые используются по назначению (отклоняют стрелку прибора, изменяют показания цифровых индикаторов и т.д.). Принятая квантованная функция в своем первоначальном (непрерывном) виде на приеме обычно не восстанавливается, хотя это можно сделать путем линейной или более сложной интерполяции. Простейшая ступенчатая интерполяция функции была осуществлена, когда мы горизонтальными отрезками соединяли вертикальные отрезки, образуя функцию (рис. а).