Релейная защита Дифференциальная защита. Общие сведения
Дифференциальная защита. Общие сведения

Диф.защита применяется в качестве основной быстродействующей защиты трансформаторов и автотрансформаторов. Ввиду ее сравнительной сложности диф.защита устанавливается не на всех трансформаторах и лишь в следующих случаях:

  1. На одиночно работающих трансформаторах мощностью 6300 кВА и выше.

  2. На параллельно работающих трансформаторах мощностью 1000кВА и выше.

  3. На трансформаторах мощностью 1000кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности кч>2, а МТЗ имеет время срабатывания t>1сек.

При параллельной работе трансформаторов диф.защита обеспечивает не только быстрое, но селективное отключение повреждения трансформатора.

Для выполнения диф.защиты трансформаторов устанавливаются ТТ со стороны всех напряжений. Вторичные обмотки ТТ соединяются в дифференциальную схему и параллельно с ним подключается токовое реле.

При рассмотрении принципа действия защиты условно принимается, что коэффициент трансформации силового трансформатора равен 1, т.е. одинаковое соединение обмоток и одинаковые ТТ. При этих условиях и пренебрегая током намагничивания трансформатора, который в параллельном режиме имеет малую величину можно считать, что первичные токи равны при протекании тока нагрузки или сквозного К.З.

II=III, следовательно вторичные токи I1=I2 и с учетом этого Iр=I1-I2=0. Следовательно диф.защита на такие режимы не реагирует.

Практически вследствие несовпадения характеристик ТТ вторичные токи не равны и поэтому в реле протекает ток небаланса. Поэтому ток срабатывания диф.защиты должен быть отстроен от тока небаланса:

Iс.з.нIнб

При К.З. в трансформаторе ток в реле Iр= I1+I2 или . Таким образом, при К.З. в зоне диф.защиты в реле проходит полный ток К.З., деленный на коэффициент трансформации ТТ. Под влиянием этого тока защита срабатывает и действует на отключение поврежденного трансформатора.

Особенности, влияющие на выполнение диф.защиты трансформаторов:

1. Наличие намагничивающего тока, протекающего только со стороны источника питания. Даже в этом случае, если коэффициент трансформации трансформатора 1 и одинаковое соединения обмоток, ток со стороны источника питания больше тока со стороны нагрузки на величину тока намагничивания трансформатора. В нормальном режиме намагничивающий ток составляет примерно 1-5%Iн трансформатора и поэтому вызывает лишь некоторое увеличение тока небаланса. Иные явления происходят при включении трансформатора на ХХ или при восстановлении напряжении после отключения К.З. В этом случае в обмотке трансформатора со стороны источника питания возникает бросок тока намагничивания, величина которого в первый момент в 5-8 раз превышает Iн трансформатора, но быстро в течении 1сек. затухает до величины порядка 20%Iн. Для предотвращения ложного срабатывания диф.защиты от броска намагничивающего тока ток срабатывания защиты должен быть больше максимального значения тока намагничивания, т.е.

Iс.з.нIнам.max

Величина Iнам зависит от конструкции трансформатора и трудно подается учету. Поэтому при практических расчетах диф.защиты ток срабатывания определяется на основании опыта эксплуатации и специальных испытаний по формуле:

Iс.з.нIн

Коэффициент кн принимается равным 1-4 в зависимости от типа реле, используемых в схеме диф.защиты. Установка величины тока срабатывания больше максимального значения тока намагничивания – не единственный способ отстройки от тока намагничивания. Ранее довольно широко применялись диф.защиты с током срабатывания, меньшим Iн, но с выдержкой времени 0,5-0,8сек. За это время ток намагничивания затухает. В настоящее время диф.защиты с выдержкой времени не применяется. Выдержка времени ухудшает защиту самого трансформатора, увеличивая размеры повреждения.

2. Неравенство вторичных токов и разнотипность ТТ.

Из принципа действия диф.защиты следует, что для получения наименьших токов небаланса ТТ должен иметь одинаковые характеристики, что при осуществлении диф.защиты трансформаторов практически невыполнимо, т.к. ТТ с разных сторон имеют разные nт и различное конструктивное исполнение. Вследствие этого они имеют различные характеристики и погрешности.

Номинальные токи обмоток трансформаторов, как правило, не совпадают со шкалой номинальных токов ТТ. Поэтому при выборе ТТ принимается ТТ, Iн которого больше по отношению к Iн обмотки трансформатора. Так например, Iн обмоток трансформатора мощностью 5600кВА напряжением 35/6,6кВ составляет:

со стороны обмотки 35кВ

со стороны обмотки 6,6кВ

При определенных выше номинальных токах ТТ должны иметь коэффициенты трансформации со стороны 35кВ 100/5 и со стороны 6,6кВ 600/5. При этом вторичные токи ТТ составляют:

со стороны обмотки 35кВ

со стороны обмотки 6,6кВ

Таким образом, вследствие неравенства вторичных токов в плечах диф.защиты в диф.реле при номинальной нагрузке трансформатора ток небаланса равен:

При сквозном токе К.З. этот ток возрастает пропорционально току К.З., а также вследствие возрастания погрешностей К.З., имеющих неодинаковые характеристики, что может вызвать ложное действие диф.защиты трансформатора. Поэтому для снижения тока небаланса, вызванного неравенством вторичных токов ТТ диф.защиты производиться выравнивание этих токов путем включения специальных промежуточных автотрансформаторов тока (АТ) или путем использования выравнивающих или уравнительных обмоток диф.реле. Промежуточные АТ могут включаться как со стороны обмотки низшего напряжения, так и со стороны высшего напряжения. Рекомендуется включать их со стороны более мощных ТТ. Для рассмотренного выше случая промежуточного АТ, установленного со стороны 6,6кВ должен повышать ток с 4,08А до 4,62А, т.е. должен включаться как повышающий и иметь . При установки промежуточных АТ со стороны 35кВ он должен понижать с 4,62А до 4,08А, т.е. должен включаться, как понижающий и иметь .

3. Неодинаковые схемы соединения обмоток трансформатров. Рассмотренные выше соотношения токов в схеме диф.защиты справедливы только для трансформаторов, имеющих одинаковые схемы соединения обмоток Y-Y или Δ- Δ. При неодинаковых схемах соединения обмоток, например Y- Δ, эти соотношения несправедливы, т.к. токи со стороны обмотки Δ оказываются сдвинутыми относительно друг друга на некоторый угол, величины которого зависит от схемы соединения обмоток. Угловой сдвиг токов создает большой ток небаланса в реле диф.защиты.

Эти токи сдвинуты на угол 300. При угловом сдвиге 300 и равенстве величин токов ток в реле определяется выражением:

Поэтому при выполнении диф.защиты трансформаторов производится компенсация углового сдвига вторичных токов путем специального соединения вторичных обмоток ТТ:

При таком соединении вторичных обмоток ТТ, в 1Т, вторичные обмотки которого соединены в Δ, создается сдвиг токов на такой же угол, как и в соединении в Δ обмоток НН трансформатора, что и обеспечивает совпадение фаз вторичных токов в плечах диф.защиты.

При определении nАТ промежуточного АТ в случае соединения одной из групп ТТ в Δ необходимо учитывать увеличение в 1,73 раза тока, подводимого со стороны этих ТТ.