Моделирование электрических систем Математические модели силового трансформатора
Математические модели силового трансформатора

Рассмотрим математические модели силовых трансформаторов, которые применяются в задачах, связанных с расчетом установившихся режимов схем электрических сетей. В таких моделях не учитываются емкостные связи между витками каждой из обмоток, между самими обмотками и обмотками и землей, а также распределенность электрических и магнитных параметров. Кроме того, ограничимся рассмотрением симметричных режимов нагрузки трансформаторов.

Получим математическую модель однофазного двухобмоточного трансформатора. Вначале предположим, что трансформатор не имеет магнитопровода (воздушный трансформатор), тогда он может быть представлен схемой рис. 2.9, в которой активные сопротивления обмоток изображены отдельно. Полярности обмоток на схеме отмечены звездочками.

Рис. 2.9. Схема трансформатора без магнитопровода

При обходе контуров на схеме рис. 2.9 в соответствии с заданными направлениями по второму закону Кирхгофа получим уравнения трансформатора в дифференциальной форме:

234

Так как направления токов на схеме ориентированы не одинаково по отношению к звездочкам, то полярность не совпадает с i2 и, наоборот, полярность не совпадает с i1.

При синусоидальных токах и напряжениях уравнения (2.34) в комплексной форме записываются следующим образом:

235

Эти уравнения равносильны следующим:

236

Последним уравнениям соответствует схема замещения рис. 2.10. В отличие от рис. 2.9 в схеме замещения первичная и вторичная цепи трансформатора связаны не индуктивно, а гальванически.

Рис. 2.10. Схема замещения трансформатора без магнитопровода

Входящие в схему рис. 2.10 разности L1 – M и L2 – M имеют физический смысл только при одинаковом числе витков первичной w1 и вторичной w2 обмоток (w1 = w2). В этом случае они представляют собой индуктивности рассеяния Ls1 и Ls2 первичной и вторичной обмоток трансформатора.

В реальных трансформаторах для моделирования потерь в стали в схему замещения трансформатора вводят активную проводимость Gμ. Для моделирования эффекта намагничивания сердечника вводят реактивную проводимость Bμ.

Если взять за основу математической модели трансформатора так называемый идеальный трансформатор с коэффициентом трансформации , для которого относительная магнитная проницаемость равна бесконечности и ток намагничивания равен нулю, то добавлением к нему элементов, учитывающих основные паразитные эффекты, можно получить полную схему замещения трансформатора (рис 2.11).

Рис. 2.11. Полная Т-образная схема замещения трансформатора

Потери энергии в обмотках трансформатора при протекании по ним токов учитываются активными сопротивлениями R1 и R2, последовательно с ними включены индуктивности рассеяния, которые учитывают эффект запасания энергии и наведения напряжения в обмотках от потоков рассеяния. Этим индуктивностям соответствуют индуктивные сопротивления обмоток X1 и X2. Ток намагничивания обусловливает намагничивающую силу, которая создает поток взаимной индукции. Величина тока намагничивания Iµ пропорциональна напряжению первичной обмотки. Параллельно индуктивной проводимости намагничивания Bµ включают активную проводимость Gµ, учитывающую потери в сердечнике.

Таким образом, идеальным трансформатором является трансформатор, для которого при любых условиях .

Трансформатор, для которого при любой нагрузке , называется совершенным трансформатором (рис. 2.11).

Во многих случаях пользуются приведенной Т-образной схемой замещения трансформатора (рис 2.12). Получается она приведениям сопротивлений вторичной обмотки к напряжению первичной обмотки по соотношениям:

Рис. 2.12. Приведенная Т-образная схема замещения трансформатора

На схеме рис. 2.12 отмечены ток и напряжение:

237