Моделирование электрических систем Узловые уравнения установившегося режима
Узловые уравнения установившегося режима

Рассмотрим пример направленного графа электрической сети, изображенного на рис. 3.10.

Для удобства записи в матричной форме параметров ветвей присвоим каждой ветви ее порядковый номер (на рис. 3.10 курсив). Составим матрицу соединений M для этого графа:

(3.10)

Рис. 3.10. Пример графа электрической сети

Умножим эту матрицу на матрицу токов ветвей, будем иметь:

(3.11)

Полученное соотношение является первым законом Кирхгофа в матричной форме записи

(3.12)

Так как к узлам графа электрической сети еще присоединены другие поперечные ветви с ЭДС и проводимостью шунта, то задающий ток в (3.12) включает в себя также токи данных ветвей

(3.13)

Здесь: Jг – матрица токов генерации (ветви с ЭДС), которые определяются через мощности генерации;

Jн – матрица токов нагрузки, которые определяются через мощности нагрузки (имеет обратное направление – от узла);

JY – матрица токов в проводимостях шунтов, которые зависят от проводимости шунта из матрицы YN и напряжения в узле из матрицы U (также имеет обратное направление – от узла, так как моделирует потребление мощности).

Умножим транспонированную матрицу соединений МT на матрицу узловых напряжений, получим:

(3.14)

или

. (3.15)

По закону Ома в матричной форме записи имеем

(3.16)

или

(3.17)

Подставим в (3.12) выражение для матрицы токов ветвей (3.17) и затем (3.15), получим

(3.18)

Введем обозначение

(3.19)

тогда (3.18) приобретет вид

(3.20)

Полученное соотношение является уравнением узловых напряжений (потенциалов) в матричной форме записи. Матрицу Y называют матрицей узловых проводимостей электрической сети. Рассмотрим структуру этой матрицы, для чего выполним матричные перемножения в (3.19). Заметим, что обратная матрица сопротивлений ветвей легко получается в силу своего диагонального вида – ее элементы суть обратные величины к сопротивлениям ветвей и являются проводимостями продольных ветвей.

Вначале перемножим первые две матрицы матричного произведения (3.19):

. (3.21)

Полученную матрицу умножим справа на матрицу MT. В результате получим:

(3.22)

Из полученной матрицы можно сделать следующие выводы о вычислении ее элементов.

1. Элементы, расположенные на главной диагонали матрицы, вычисляются как сумма проводимостей ветвей, подходящих к соответствующему узлу:

(3.23)

где Yii – диагональный элемент матрицы Y;

Zj – сопротивление j-й ветви;

wi – множество номеров узлов, связанных с i-м узлом.

2. Недиагональные элементы равны проводимостям ветвей, имя каждой из которых состоит из номеров узлов, соответствующих номеру строки и номеру столбца, на пересечении которых находится данный элемент, и взятых с противоположным знаком. Матрица Y является симметричной матрицей.

(3.24)

Запишем уравнение узловых напряжений для узла с номером i:

(3.25)

Объединив подобные члены, получим, что в диагональные элементы матрицы Y войдут дополнительные слагаемые YNi:

(3.26)

т. е. диагональный элемент будет равен сумме проводимостей всех подходящих к i-му узлу ветвей, включая поперечную ветвь – шунт YNi.

Задающие токи узлов в (3.20) будут состоять только из токов генерации и токов нагрузки.

В случае отсутствия связей с нейтральной плоскостью N система уравнений (3.20) не имеет единственного решения, так как в этом случае определитель матрицы Y равен нулю. Сумма всех задающих токов в такой сети равна нулю:

(3.27)

Следовательно, среди всех n узлов можно выделить узел, например с номером n, ток в котором равен

(3.28)

Для уравнений узловых напряжений это означает, что одно уравнение лишнее, т. е. зависит от остальных уравнений и может быть получено через сумму всех остальных уравнений. Так как ток в этом узле может быть получен из баланса токов в сети (3.28), то его называют балансирующим. Обычно это шины мощной электростанции или системы.

Таким образом, из системы (2.20) исключается одно уравнение и тогда получается система независимых линейных уравнений порядка n – 1. Однако, поскольку число неизвестных напряжений по-прежнему равно n, в одном из узлов следует задать напряжение по величине и фазе так, чтобы все напряжения вычислялись относительно этого известного напряжения. Такой узел в сети называется базисным. Обычно фазу напряжения базисного узла принимают равной нулю, т. е. вектор напряжения базисного узла совмещают с действительной осью. Остальные узлы называют независимыми узлами.

Во многих случаях балансирующий узел и базисный узел совмещают, и в дальнейшем будем считать, что это один и тот же узел.

Таким образом, с исключением уравнения для базисного балансирующего узла с номером n будем иметь систему уравнений (3.20) с числом уравнений n – 1, однако в эти уравнения будет входить слагаемое с заданным напряжением базисного узла.

Изменим номер базисного балансирующего узла. Пусть его номер есть 0 (ноль). Тогда уравнение (3.20) приобретет следующий вид:

(3.29)

где Y0 – матрица проводимостей ветвей, связывающих независимые узлы с базисным балансирующим узлом;

U0 – напряжение базисного узла (скаляр).

Матрица узловых проводимостей в (3.29) имеет порядок n – 1 и определяется через матрицу инциденций M, в которой нет одной строки, соответствующей балансирующему узлу.

Необходимо заметить, что во всех уравнениях, где одновременно присутствуют токи и напряжения (3.16), (3.17), (3.18), (3.20), (3.25) и (3.29), напряжения даны в фазных значениях, хотя индекс (буква «ф») для простоты не записывался. Эти же уравнения можно считать записанными и для линейных напряжений, однако токи будут увеличенными в раз, и для вычисления истинных токов их следует уменьшать в .